LUNGENÄRZTE

im Netz

In Zusammenarbeit mit:

Herausgeber:

06.01.2020

Was schützt menschliche Zellen vor Vogelgrippe?

Wären Vogelgrippeviren von Mensch zu Mensch übertragbar, könnte eine PandemiePandemie
Unter einer Pandemie versteht man eine sich weit verbreitende und dabei ganze Länder oder Kontinente erfassende Krankheit.
Vermischen sich beispielsweise die Erbinformationen von zwei verschiedenen Influenza-Viren in einem Zwischenwirt (z.B. Schwein), tritt ein neuer Virus-Typ mit noch unbekannten Eigenschaften auf. Dieser so genannte Subtyp kann sich schnell ausbreiten, da die Menschen gegen diesen Erreger weder über natürliche noch infolge einer Schutzimpfung aufgebaute Antikörper verfügen. Der jährliche Grippe-Impfschutz erfasst zwar neue Varianten des Influenza-Virus (d.h. leichteVeränderungen in der Oberflächenstruktur), aber keine komplett neuartigen Subtypen. Bricht eine Pandemie aus, muss daher schnell ein Impfstoff gegen den neuen Subtyp entwickelt werden und/oder ein antiviral wirksames Medikament flächendeckend eingesetzt werden.
drohen. Was den Sprung vom Tier auf den Menschen unwahrscheinlicher macht, haben jetzt Forscher hierzulande untersucht.

Wann immer sich plötzlich Menschen mit einem Vogelgrippevirus anstecken, muss die Weltgesundheitsorganisation WHO das Risiko bewerten: Sind das die ersten Anzeichen einer Pandemie? Oder bleibt es bei einigen Dutzend, vielleicht auch Hunderten Fällen, die nur durch engen Kontakt mit infiziertem Geflügel entstehen? Forscher*innen um Prof. Matthias Selbach vom Max-Delbrück-Centrum für Molekulare Medizin haben nun einen weiteren Puzzlestein gefunden, der bei dieser ersten Einschätzung wichtig sein könnte. Vogelgrippeviren des Typs Influenza A können demnach infizierte menschliche Zellen nicht so gut in Virenfabriken verwandeln, sie produzieren dort nämlich nicht genug von ihrem Matrix-Protein M1. Das jedoch brauchen die Viren, um ihr vielfach kopiertes Erbgut wieder aus dem Zellkern heraus zu schleusen - eine Voraussetzung, um neue Viren zu bauen, berichten die Forscherinnen und Forscher (Nature Communications, Online-Veröffentlichung am 4.12.19).

Grippe ist nicht gleich Grippe. Der Name steht für eine Viren-Großfamilie, jeder Familienteil ist benannt nach zwei stachelförmigen Auswüchsen auf ihrer Oberfläche: Hämagglutinin (H), der Schlüssel zu den Zellen von Mensch und Tier, in denen das Virus sich vermehren kann. Und Neuraminidase (N), das den Nachkommen hilft, sich aus der infizierten Zelle zu befreien. In Wasservögeln sind 16 Hämagglutinin-Versionen und neun Neuraminidase-Varianten bekannt. So gibt es mindestens 144 mögliche Kombinationen, die sich ständig verändern und an neue Wirte anpassen: Hühner zum Beispiel, aber auch Säugetiere wie Pferde, Schweine und Menschen.

Solche neuen Virusvarianten sind oft tückischer als die saisonale Grippe, denn das ImmunsystemImmunsystem
Das körpereigene Abwehrsystem besteht aus drei Funktionskreisen:
(1) Knochenmark als Bildungsort für Immunzellen.
(2) Verschiedene zentrale Immunorgane wie Thymus (Prägung von T-Lymphozyten) und darmnahe Lymphorgane (für die Prägung von B-Lymphozyten).
(3) Sekundäre Lymphorgane wie Milz, Lymphknoten und Mandeln (Tonsillen).
Man unterscheidet die so genannte humorale Abwehr (über die Körperflüssigkeiten mit darin enthaltenen Antikörpern und Faktoren aus dem so genannten Komplementsystem) und die zellvermittelte Abwehr (mit B- und T-Zellen, Makrophagen, Antigen-präsentierenden Zellen, Granulozyten u.a.).
des Menschen ist ihnen noch nie begegnet. Manche Menschen sind ihnen wehrlos ausgeliefert, bei anderen reagiert das Immunsystem so heftig, dass die eigene Gegenwehr dem Körper schadet. Im schlimmsten Fall könnte eine Pandemie Millionen Menschenleben kosten. So wie bei der Spanischen Grippe 1918, die mehr als 50 Millionen Opfer forderte. Weltweit versuchen daher Forscherinnen und Forscher die Spielregeln zu verstehen, wann eine Pandemie droht und wann nicht.

 „Hämagglutinin von Mensch und Vogel haben zum Beispiel einen leicht unterschiedlichen chemischen Aufbau. So fällt es einem Vogelgrippevirus schwerer, in eine menschliche Zelle einzudringen als in die eines Vogels“, berichtet Selbach. Welche weiteren natürlichen Speziesbarrieren es bei Grippeviren gibt, war die zentrale Fragestellung des Doktoranden Boris Bogdanow in seiner Arbeitsgruppe, dem Erstautor der aktuellen Studie.

Die Gruppe von Matthias Selbach analysiert Proteine mithilfe quantitativer MassenspektrometrieMassenspektrometrie
Die Massenspektrometrie bezeichnet ein Verfahren zur Analyse von Molekülmassen. Die zu untersuchende Substanz, wird dabei in die Gasphase überführt und ionisiert. Die Ionen werden durch ein elektrisches Feld beschleunigt und dem Analysator zugeführt. Dabei sortieren sie sich nach ihrem Masse-zu-Ladung-Verhältnis.

. In Zusammenarbeit mit dem Robert Koch-Institut (RKI) infizierten Boris Bogdanow und seine Kolleg*innen menschliche Lungenepithelzellen jeweils mit einem Vogelgrippe- beziehungsweise einem humanen Grippevirus. Dann maßen sie die Menge aller neu produzierten Proteine im Massenspektrometer. Dazu hatte die Postdoktorandin Dr. Katrin Eichelbaum eine Methode entwickelt, mit der sich neue und alte Proteine genau unterscheiden lassen. „Wir konnten allerdings in der ersten Analyse keine gravierenden Unterschiede zwischen den beiden Stämmen feststellen“, erklärt Boris Bogdanow. „Das Vogelgrippevirus und das menschliche Virus unterschieden auf den ersten Blick wenig in der Proteinproduktion, was uns doch ziemlich überraschte.“

 

Doch der Teufel steckt im Detail. Und so griff Bogdanow zu tiefgreifenderen Analysen, um sich die Proteinverteilung genauer anzusehen. Dabei stieß er auf das Matrix-Protein M1: Es wurde in den Lungenzellen, die vom humanen Virus infiziert waren, in weit größeren Mengen hergestellt. Das M1-Protein ist unter anderem dafür zuständig, die vervielfältigte Viren-RNA wieder aus dem Zellkern der infizierten Zellen heraus zu schleusen, um dann mit anderen neu produzierten Virenproteinen zu den Nachkommen der Grippeviren zusammengebaut zu werden. Könnte es also sein, dass die Viren-RNA der Vogelgrippeviren in menschlichen Zellen quasi im Zellkern gefangen bleibt, weil zu wenig M1-Protein vorhanden ist?

Fluoreszenzmikroskopische Untersuchungen bestätigten den Verdacht: Das Erbgut des Vogelgrippevirus schaffte es viel schlechter, aus dem Zellkern auszubrechen als die RNA des humanen Grippevirus. Aber warum? Gemeinsam mit der Sequenzierplattform des MDC und Prof. Irmtraud Meyer entdeckten sie einen kleinen Abschnitt in der Viren-RNA des Vogelgrippevirus, der alternatives Spleißen beeinflusst. „Wir nennen das ein ciscis
Die cis-trans-Isomerie bezeichnet in der Chemie eine spezielle Form der Isomerie. Dabei haben zwei Moleküle zwar die gleiche chemische Zusammensetzung (Summenformel), unterscheiden sich aber in der räumlichen Anordnung der Atome (chemische Struktur) und haben deshalb teilweise auch unterschiedliche chemische, physikalische und biologische Eigenschaften.
 
 
-regulatorisches Element“, erläutert Bogdanow. „Alternatives Spleißen regelt nämlich, welche Proteine schlussendlich aus einem Gen gemacht werden, denn viele Gene kodieren für mehr als ein Protein. Wenn menschliche Zellen von Vogelgrippe befallen werden, sorgt dieses Element dafür, dass mehr M2- statt M1-Protein hergestellt wird.“

Um die Relevanz dieses Ergebnisses abzuschätzen, übertrugen die Forscher*innen um Prof. Thorsten Wolff vom Robert Koch-Institut das cis-regulatorische Element vom Vogel- auf das Menschenvirus. Tatsächlich konnte sich dadurch das menschliche Grippevirus nun schlechter in menschlichen Lungenzellen vermehren. Einen ähnlichen Versuch machte das Team um Selbach sogar mit Viren der Spanischen Grippe, deren Erbmaterial in den 90er Jahren aus Gräbern im Permafrostboden Alaskas isoliert wurde. Sie verwendeten für dieses Zellkultur-Experiment allerdings nur einen kleinen Teil der Viren-RNA und nicht das gesamte Virus. Dennoch konnten sie damit ihre These zum cis-regulatorischen Element auch für dieses Virus bestätigen.

„Wie pathogen ein Vogelgrippevirus ist und ob potenziell eine Pandemie droht, hängt natürlich von vielen Faktoren ab“, betont Selbach. „Eine Studie in Zellkulturen kann das nicht alles abdecken. Dennoch kann es sinnvoll sein, in Zukunft eine Analyse dieses RNA-Abschnitts in die Risikobewertung von Vogelgrippeviren einzubeziehen.“

Quelle: Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft