LUNGENÄRZTE

im Netz

In Zusammenarbeit mit:

Herausgeber:

09.01.2014

Krankenhauskeime künftig wirksamer bekämpfen

AntibiotikaresistenzenAntibiotikaresistenzen
Bakterien können eine Resistenz gegen bestimmte Arzneistoffe entwickeln, das heißt, sie werden unempfindlich gegenüber diesen Medikamente. Die Medikamente, vor allem Antibiotika, sind nicht mehr gegen diese Bakterien wirksam. 
werden immer häufiger und stellen bei Krankenhauskeimen wie Pseudomonas aeruginosa ein lebensbedrohliches Problem dar. Forschern des Helmholtz-Instituts für Pharmazeutische Forschung Saarland gelang es jetzt, mithilfe gezielten Wirkstoffdesigns eine Substanz zu entwickeln, die Infektionen mit Pseudomonaden erfolgreich bekämpft. Sie unterbricht die bakterielle Kommunikation und verhindert, dass Bakterien Giftstoffe herstellen. Aufgrund der Wirkungsweise gehen die Forscher davon aus, dass bei der Substanz eine geringere ResistenzentwicklungResistenzentwicklung
Bakterien können eine Resistenz gegen bestimmte Arzneistoffe entwickeln - das heißt, sie werden unempfindlich gegenüber diesen Medikamente. Die Medikamente, vor allem Antibiotika, sind nicht mehr gegen diese Bakterien wirksam.
Resistente Erreger entwickeln sich - insbesondere bei großen Erregermengen - entweder durch spontane Genveränderungen (Mutationen) oder durch selektive Vermehrung (Selektion) von natürlich vorkommenden resistenten Bakterien-Subpopulationen, z.B. aufgrund einer unzureichenden oder zu früh abgebrochenen Therapie.
zu erwarten ist als bei gängigen Antibiotika.

Pseudomonas aeruginosa ist ein weitverbreiteter Krankenhauskeim. Besonders bei Patienten mit der Stoffwechselkrankheit Zystische Fibrose (Mukovizidose) kann er die Lunge befallen und chronische Entzündungen hervorrufen. Durch einen schleimigen Biofilm schützt er sich vor dem ImmunsystemImmunsystem
Das körpereigene Abwehrsystem besteht aus drei Funktionskreisen:
(1) Knochenmark als Bildungsort für Immunzellen.
(2) Verschiedene zentrale Immunorgane wie Thymus (Prägung von T-Lymphozyten) und darmnahe Lymphorgane (für die Prägung von B-Lymphozyten).
(3) Sekundäre Lymphorgane wie Milz, Lymphknoten und Mandeln (Tonsillen).
Man unterscheidet die so genannte humorale Abwehr (über die Körperflüssigkeiten mit darin enthaltenen Antikörpern und Faktoren aus dem so genannten Komplementsystem) und die zellvermittelte Abwehr (mit B- und T-Zellen, Makrophagen, Antigen-präsentierenden Zellen, Granulozyten u.a.).
und vor Antibiotika. Dazu kooperieren viele Bakterien miteinander und produzieren den Schleim gemeinsam. Sie verständigen sich mithilfe eines bakteriellen Kommunikationssystems namens Quorum Sensing. „Beim Quorum Sensing setzen Pseudomonaden kontinuierlich Stoffe frei. Diese Stoffe werden von anderen Pseudomonas-Bakterien mithilfe ihrer Rezeptoren wahrgenommen – allerdings nur, wenn die Konzentration hoch genug ist“, sagt Lu Cenbin, Wissenschaftler am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS). „Daraufhin ändern sie gemeinsam ihr genetisches Programm.“ Nimmt die Dichte der Bakterienpopulation zu, steigt auch die Konzentration der Signalstoffe. Pseudomonaden nutzen diese Art der Kommunikation auch, um Gifte wie das Pyocyanin herzustellen, das unter anderem Lungenzellen schädigt.

Forscher am HIPS haben nun erstmals einen Wirkstoff entwickelt, der diese bakterielle Kommunikation unterbricht (siehe Angewandte Chemie, Online-Vorabveröffentlichung am 11.12.2013). „Ein zentraler Rezeptor im Quorum Sensing ist PqsR. Wir haben gezielt nach Substanzen gesucht, die die Informationsübertragung an diesem Molekül blockieren“, sagt Prof. Rolf Hartmann, Abteilungsleiter am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), einer Außenstelle des Helmholtz-Zentrums für Infektionsforschung (HZI). Als Vorlage für ihre chemischen Synthesen dienten den Forschern Signalstoffe, die normalerweise an den Rezeptor PqsR binden. Schon vor einem Jahr hatten die Forscher eine Substanz hergestellt, die in ersten Tests die Signalweiterleitung am Rezeptor unterbrach. Allerdings konnten die Forscher diese Wirkung in Pseudomonas aeruginosa nicht bestätigen. „Wir wissen jetzt, dass ein bakterielles EnzymeEnzyme
Das sind (für den Stoffwechsel aller Lebewesen) unentbehrliche Eiweißkörper, die als Biokatalysatoren biochemische Vorgänge ermöglichen, sie beschleunigen und in eine gewünschte Richtung ablaufen lassen, ohne selbst dabei verändert zu werden. Es gibt eine große Anzahl verschiedener Enzyme, jedes ist für einen bestimmten Vorgang zuständig. Enzyme funktionieren nach dem Schlüssel-Schloss-Prinzip, das heißt jedes Enzym hat eine spezielle Eiweißstruktur, die es befähigt, den Stoff, dessen Reaktion es steuern soll, gezielt zu erkennen (Substratspezifität). So sind im Organismus gleichzeitig eine Vielfalt von unterschiedlichen Stoffwechselvorgängen möglich. 
unsere Substanz chemisch so verändert, dass sie den Rezeptor aktiviert statt ihn zu hemmen“, sagt Hartmann. Eine kleine Modifikation an einer bestimmten Stelle der Molekülstruktur reichte aus, um die Wirkung der Substanz komplett umzukehren.

Durch gezielte Veränderungen konnten die Saarbrücker Wissenschaftler die Substanz so weiterentwickeln, dass das Enzym nicht mehr an der kritischen Stelle angreifen und die Substanz umwandeln konnte. Im Test zeigte die finale Substanz das gewünschte Ergebnis: Sie verhinderte, dass der Rezeptor PqsR angeschaltet wurde. Als Folge produzierten die Bakterien weniger Pyocyanin. Im weiteren Versuchen erhöhte die Substanz erfolgreich die Überlebensrate von Tieren, die mit Pseudomonas infiziert waren.

Das Besondere an der neu entdeckten Substanz ist, dass keine Resistenzentwicklung zu befürchten ist, wie sie bei Antibiotika beobachtet wird. „Unser Molekül greift in keine lebenswichtigen Prozesse der Bakterien ein. Daher haben Pseudomonaden, die eine Resistenz dagegen entwickeln, keinen Überlebensvorteil und verbreiten sich nicht“, sagt Hartmann. „Da die Substanz die Verständigung der Bakterien miteinander stört, können wir so dennoch die Infektion bekämpfen.“

Quelle: Helmholtz-Zentrum für Infektionsforschung